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Moving Towards 6G: Emerging Use Cases
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VR/AR Internet-of-Things

AR for surgery

VR for education

Auto-manufacturing

E-health

Intelligence

Environment  sensing

Smart home
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General 6G KPI Targets

Greater sensing capability

Higher positioning accuracy

5G
mMTC

U
RLLC

eM
BB

6G
Energy efficiency

Connectivity

Sensing accuracy

Peak data rate

Latency

Security



Conflict between simplicity (comfort) and high sensing accuracy

$

mmWave Radar

6G Challenges: Sensing Efficiency

• WiFi based RF Sensing
• Requires the cooperation of multiple WiFi access points to 

achieve high sensing accuracy
• mmWave Radar

• High hardware cost makes it hard for mass deployment

WiFi based RF Sensing

Radar



Solutions: Meta-Material aided Sensing
Expectation on a new technology
• Low cost in manufacture

• Easy and flexible deployment

• Compatible with 6G demands on sensing and localization

Reconfigurable Meta-surfaces
• Implemented by metamaterial

• Cost efficient in manufacture and deployment

• Control and customize favorable radio environments

• Provide high accuracy contact/contactless sensing with wireless data 

gathering

• So-called Reconfigurable Intelligent Surface,

(RIS) or Intelligent Reflecting Surface (IRS)
%

RIS

RF antennas



Introduction of Metamaterial
Natural Materials：Limited EM Wave Control Capability
• The dielectric permittivity, 𝜀, and magnetic conductivity, 𝜇, of materials 

determine the capability of controlling EM waves (e.g. reflection, refraction)
• Limited possibilities of atom arrangement of natural materials lead to limited 

available values of 𝜀 and 𝜇, and thus limited capability to control EM waves

&

𝜀

𝜇
Common materials
(e.g., water and glass)

Magnetic materials
at low frequency

Metal materials
at light frequency

Rare in nature
Atom arrangement has 

limited possibilities

Metamaterials: Powerful EM Wave Control Capability
• Metamaterials are artificial structures that are non-existent in nature and  

can have arbitrary pair of (𝜀, 𝜇)
• Two technology fields studying metamaterials – Optics and Microwave



History of Metamaterial Development

Veselago. Concept of 
Left-handed material
• 𝜖 < 0, 𝜇 < 0
• Negative refraction

Pendry. Realize -ε and -μ
• -ε: periodic array of metallic rods 
• -μ: periodic array of split ring

Sievenpiper. Proposal of 
meta-surface
• Two-dimensional
• Simplify design and manufacturing

Sievenpiper. 
Programmable metasurface
• Varactor
• 360! reflection phase tuning

1968

1996 & 1999

1999

2001

D. R. Smith. Experimental 
verification 
• Left-handed material

2001

2006
Pendry, et al. 
Transformation optics
• Design metamaterial 

with any 𝜖 and 𝜇
• Enabling flexible 

control of EM wave

'



History of Metamaterial Development

2011

2014

2019

2019

2020

H. Kamoda, et al. 
Reconfigurable large 
reflectarray with PIN 
diodes
• Easy to control
• Millimeter wave

T. Cui, et al. Programmable 
metasurface with PIN diodes
• Simplify the design
• Digital coding

M. D. Renzo, et al. 
Proposal of reconfigurable 
intelligent surfaces
• Focus on reflection
• Extensive applications in 

wireless networks

NTT Docomo. 
Protype of metamaterial 
reflector
• 10x increase in data 

rate

(

S. Zhang, et al. 
Proposal of intelligent omni-
surface
• Enabling dual function of 

reflection and transmission



Reconfigurable Intelligent Surfaces (RIS)

)

• Outer layer: A 2D-array of RIS elements; 
directly interact with incident signals.

• Middle layer: A copper plate; prevent the 
signal energy leakage.

• Inner layer: A printed circuit; connect the 
RIS elements to the RIS controller.

RIS controller

Copper backplane

Control circuit 
board

RIS element
• Low-cost sub-wavelength programmable

metamaterial particle.
• Reflect incident RF signals and impose a 

controablle phase shift
• Working frequency: from sub-6 GHz to THz

An ultra-thin metasurface composed of multiple layers

Example of a programmable 
metamaterial particle

PIN diode



Working Principle for Wireless Communications
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RIS works as a beamformer
• Signals can be reflected or transmitted 
• Phase shift of the radiation is controlled by PIN 

diodes’ bias voltages (ON/OFF of the diode)
• Programming the ON/OFF of all diodes 

collectively realize different beamforming modes
Advantage
• Cost efficiency: Analog beamforming, no extra 

RF equipment needed for demodulation & 
modulation

• Energy Efficiency: No extra RF signals 
generation, energy saving
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Signal Reflection Model
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Model of reflected signal on RIS 
𝑦 = 𝛤𝑒()𝑥

• 𝛤 ∈ [0,1]: reflection amplitude

• 𝛤 = 0: absorbed

• 𝛤 = 1: fully reflected

• 𝜃 ∈ [0,2𝜋]: phase shift between incident and 

reflected signals.

Model of reflected signal on an RIS element

• In practical systems, available phase shifts of an RIS element are discrete, 

due to limited number of PIN diodes (K PIN diodes⟹ 2* phase shifts).

• The parameters of an RIS element1 are carefully designed so that the 

phase shifts have uniform intervals.
1: e.g., shape of the metal patch and type of the PIN diodes 

𝛤, 𝜃
𝑥

𝑦

Incident EM wave

Emitted EM radiation
from induced
current

Mechanism

induced current distribution

H. Zhang, et al, “Reconfigurable Intelligent
Surfaces assisted Communications with
Limited Phase Shifts: How Many Phase Shifts
Are Enough?” IEEE Transactions on Vehicle
Technology, vol. 69, no. 4, pp. 4498-4502, Apr.
2020.



Channel Model
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Rician Model
• User-RIS-BS links act as the dominant LoS component

• All other paths contributes the NLoS

• Product of distance path loss

• Received signal

NLoSLoSRatio of LoS to NLoS

Reflection 
coefficient

Channel 
gain

noise

ℎ!,#, LoS component
)ℎ!,#, NLoS component



Applications: Radio Frequency Sensing
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Indoor Localization and Recognition
• Enhance remote RF sensing by customize radio environments.

• Enable high accuracy indoor human and object localization and 
recognition

Customized radio environement for 
sensing human posture

Customize signal beams for 
scanning human location
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Prototype of Metasurface

• Size of metasurface: 45×57×0.71 cm3, total 640 metamaterial particles

• Size of each metamaterial particle: 2.87×1.42 cm2

• Total number of possible phase shifts: 4
• 2 of them are used, and have phase shifts with interval 𝜋

• Working frequency: 3.6 GHz

Metamaterial Particle

Photo

PIN 

#1,2,3
Choke inductance

SubstrateVia hole
Copper 
Patch Metal layer

Structure

* Photo shows the actual metasurface prototype used as the testbed in PKU lab.
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RF sensing
• Living environment is covered

seamlessly by wireless signals

• Ubiquitous signals provide the
foundation for RF sensing

Background

!&

Received signals 
change due to 
change of target

• Principles:
• Sensing targets between a pair of RF Tx and Rx impact the RF

channel .
• The Rx can recognize different sensing targets by getting different

received signals.

Visualization of cellular signals



Applications
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• Advantages:
• No needs for the contact or line-of-sight view of the sensing targets

Security Smart Space Safety

Theft Detection

Theft detection

Fall Detection

Elderly Care

Interaction

Emergency Alarm



Techniques Review
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• Active Methods:
• WiFi Sensing:

• Utilize the impact of the targets on WiFi signals

• Various metrics: signal strength, phase, doppler and so on

• mmWave Radar:

• Utilize the directional beams in mmWave communications

• Receivers can detect reflected signals from targets

• Passive Method: RIS-aided RF sensing

• Limitations: sensing accuracy is limited by channel conditions

Solution



Goals and Challenges
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Goals
• Implement practical RIS-aided RF sensing system for

human and object localization and recognition

• Achieve high sensing accuracy

Challenges
• Design practical sensing protocols to coordinate the RIS

and the RF transceiver.

• Search the optimal phase shift selection for the RIS
elements in a large feasible region.

• Propose efficient algorithms to obtain semantic meaning
and location information of human and objects from
received signals.



RIS-based RF Posture Sensing: 
Design, Optimization, and Implementation

Case Study I: RIS aided Posture Recognition

"*

J. Hu, et al, “Reconfigurable Intelligent Surfaces based RF Sensing: Design, Optimization, and Implementation,” IEEE
Journal of Selected Areas in Communications, vol. 38, no. 11, pp. 2700-2716, Nov. 2020.



RIS-based RF sensing system
• RIS can control the wireless environment, which can provide favorable

wireless environment for RF sensing.

• Application in human posture recognition:

• Recognize different human postures automatically

Motivation

"!

Challenges
• RIS configuration design: How does RIS control the wireless environment

• The discrete phase shifts of a massive number of RIS elements need
to be determined.

• Decision function design: How does Rx judge human posture
• RF channels involve an RIS and a practical are hard to analyze,

which makes the relationship between Rx signals and human posture
inexplicit.

• Moreover, RIS configuration and decision function are coupled.
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Model Description
System Structure
• Transmitter: A directional antenna which is pointed towards the RIS

• Receiver: An omni-directional vertical antenna below the RIS

• Human!Space reflection vector carries the information of postures.

• RIS: RIS elements in the same group are in the same state.

Channel Model
• Multi-path component:

• Environment scattering

• LoS component:

• Transmitter → Receiver

RIS
elemen
t

• Reflection dominated components
• Transmitter → RIS → Human → Receiver
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Periodic Configuring Protocol
Recognition Period:
• Contains 𝐾 frames, during which the human posture is fixed
• Received signals during a recognition period are used for recognition

Frame Configuration:
• Each group of RIS elements sequentially changes from State 1 to Na.

• Constituted by the durations that each group stays in the 𝑁+ states

Different states correspond to different phase shifts



Decision Function: The receiver use the decision function to generate the
probabilities for deciding on different human postures.

Optimization Problem: Minimize the false recognition cost (Bayesian)

Problem Formulation

"$

min
𝑻,𝓛

𝐶&'(𝑻, 𝓛) =3
(,("

Pr(pos() · 𝑐𝑜𝑠𝑡(𝑖, 𝑖′) @ 𝔼𝒚[Pr(𝒚|pos() · ℒ("(𝒚)]

Problem Decomposition:
• Decomposing (P1) into the frame configuration optimization and the

decision function optimization.

𝐶GH(𝑻, 𝓛)
Coupled optimization 

objective in (P1)

RIS frame configuration
optimization objective
Decision function
optimization objective

𝐶GH(𝑻)

𝐶GH(𝓛)

𝑻: Frame configurations 
in a recognition period
𝓛: Decision function

Optimization Variables
Probability of Posture 𝑖 to appear

Cost for recognizing Posture 𝑖 as 𝑖′

𝒚: Measured signals in a period

ℒ("(𝒚): Probability for deciding 
on Posture 𝑖* given 𝒚

(P1)



Algorithm Design: Optimize T
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Solving Frame Configuration Optimization:

• Step 1: Construct measurement matrix 𝜞 given frame configuration
• Element 𝜞 +,, is the received signals in the 𝑘-th frame due to unit reflection 

coefficient in the 𝑗-th space block, i.e., 

• Based on compressive sensing technique, minimizing mutual coherence of 
𝜞 increases the information of space reflection involved in received signals.

• Step 2: Minimize mutual coherence of 𝜞 w.r.t. 𝑻, i.e., 

𝜞 ,,( = 𝒕,𝜶(
𝒕+: 𝑘-th row of frame configuration 𝑻 𝜶,: channels for the 𝑗-th block given RIS 

elements in 𝑁- states  

(𝑆𝑃1) min
𝑻

𝜇(𝜞) = 3
,.,*

|𝜸,/𝜸,"|
∥ 𝜸, ∥@∥ 𝜸," ∥

.

𝜸𝒋: the received signal vectors for the 𝑗-th
block under configurations in 𝐾 frames

• To solve (SP1) efficiently, configurations 
in 𝐾 frames are optimized iteratively.

• In each iteration, pattern search and 
augmented Lagrangian methods are 
used to coarsely and finely optimize 𝒕+. 



Algorithm Design: Optimize L
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Solving Decision Function Optimization:

• Step 1: Model the decision function 𝓛 with a neural network.

• Input layer: received signals in 𝐾 frames 

• Output layer: obtain probability of each posture using a 
softmax function 

• Step 2: Optimize parameters of the neural network 

• Given the optimized frame configuration 𝑻∗ in (𝑆𝑃1), a training data set of 
received signal vectors labeled with different human postures is collected

• The objective is to minimize the false recognition cost by optimizing the 
weights of the neural network, i.e., 𝜽, by using back-propagation method

𝐾-dim Input

𝑁2-dim Output

Hidden Layer

𝑆𝑃2 min
𝜽
∑(∑#.4#𝓛#

𝜽(𝒓(). 𝒓(: 𝑖-th received signal vectors in training data set 

𝑙(: posture label of 𝒓( in the training data set 



Implementation
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RIS & RIS Control Circuit
• Size of RIS: 69× 69× 0.52 cm3

• Dielectric substrate: Rogers 3010 (dielectric constant:𝜀 =10.2)

• PIN diodes: BAR 65-02L × 3

• Total number of possible phase shifts: 8

• Four of them are used with phase shifts (-
.
, /-
.
, 0-
.
, 1-
.

)

• RIS controller: FPGA ALTERA-AX301



Implementation
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RF Circuit
• Baseband Processor: USRPs LW-N210

• RF Board: SBX-120W (0-6GHz, Max Power = 100mW)

• Amplifier: ZX60-43-S+ (Gain around 17dB)

• Synchronizer: RIGOL DG4202 provides the

pps and clock signals.

Date Processor
• Host computer connects the 

Tx/Rx USRPs with Ethernet

to send/receive baseband data



Experimental Results
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Effectiveness: 
• The average mutual coherence of the measurement matrix is

reduced (from 0.36 to 0.22), which can improve sensing accuracy.



Experimental Results
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• Compared with traditional RF sensing systems, RIS increases the

posture recognition accuracy with 23.5%.

• Compared with the system with random frame configurations, the

system with optimized frame configurations achieves 14.6% higher

recognition accuracy.

Proposed method Random method Without RIS method



MetaSensing: 
Intelligent Metasurface Assisted RF 3D Shape 

Sensing by Deep Reinforcement Learning

Case Study II: RIS aided RF 3D Shape Sensing

#!

J. Hu, et al, “MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning,” IEEE
Journal of Selected Areas in Communications, to be published.



RF 3D shape sensing:
• From optical images, the complete information about 3D objects is

hard to acquire due to the blocking of themselves.

• RF signals can detect these space of objects by reflection and
scattering, which makes 3D sensing possible from RF signals

Motivation

#"

Challenges
• How to optimize the RIS's configuration to create favorable propagation

channels for sensing
• How to obtain the mapping from RF signals to 3D shapes.

RIS-based 3D shape sensing
• RIS controls RF signal beams by manipulating configuration

• Using controlled RF signal beams, RIS can obtain more information
about 3D objects in space and construct their shapes.
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Model Description
System Description
• Transmitter: A directional antenna which is pointed towards

the RIS

• Receiver: An omni-directional vertical antenna below the RIS

• RIS: Contains 𝑁 meta-elements, each with 𝑁" phase shifts

• Sensing Target: Existence of objects at 𝑀 space grids

Channel Model
• The target space is discretized into
𝑀 space grids.

• The total 𝑁×𝑀 reflection paths
(Tx→ 𝑁 RIS elements→ 𝑀 grids→Rx)
are summed at the Rx
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Sensing Protocol
RF Sensing Protocol
• Synchronization Phase: synchronizes the Tx transmission, the RIS's

configuration changes, and Rx reception

• Calibration Phase: the RIS is in 𝒄2 (no phase shifts incurred), and the
received signal is used to subtract the environmental scattering.

• Data Collection Phase: RIS changes its configuration with equal time
interval, and the Rx averages the received signals in each config.

• Data Processing Phase: The Rx use a decision function to determine
the objects' existence at different space grids.

Synchronization 
Phase

RF Signal (!! Sine Wave Signal)Tx
Configurations

��!! !" !# !$Metasurface

Rx ��

Data Collection 
Phase

Data Processing
Phase

Mapping of Rx 
Signals

!%

Calibration 
Phase



Decision Function: The Rx use the mapping function 𝒇𝒘 to estimate the
probabilities for objects to be at 𝑀 space grids, i.e., ?𝒑 ∈ 0,1 4.

Optimization Problem: Minimize the cross-entropy (CE) loss given
configuration matrix 𝑪 and mapping function parameters 𝒘

Problem Formulation

(2) Rx signal is determined 
by RIS configuration 𝑪

(3) Config.  𝑪 consists of the 
phase  shifts of the 𝑁 RIS
elements in 𝐾 time intervals

(1) Estimation is obtained by 
mapping of received signals

Entropy of Ground Truth
𝑝(: probability of m-th grid 
being non-empty

Entropy of Estimation
𝑝(: probability of m-th grid 
being non-empty

Constraints

Challenge :

• Optimization of config. 𝑪 and mapping 𝒇𝒘 are highly coupled.



Algorithm Design
• Decompose (P1) into configuration optimization and mapping function

optimization problems

CE(𝑪, 𝒇𝒘)

Coupled optimization 
objective in (P1)

RIS configuration
optimization (sP1)

Mapping function
optimization (sP2)

CE 𝑪 |𝒇𝒘 CE 𝒇𝒘 |𝑪

Challenge: Configuration matrix 
𝑪 is an integer matrix and has a 
large number of elements.

Solution: Propose a deep 
reinforcement learning 
algorithm which can find the 
optimal policy for selecting 𝑪.

Challenge: Mapping function 
𝒇𝒘 has unknown form and 
parameter 𝒘. 

Solution: Model 𝒇𝒘 by a neural 
network depicting an arbitrary 
function and propose a supervised 
learning algorithm to train 𝒘.



Algorithm Design
Updating RIS configuration selection policy 𝝅
• Formulate RIS configuration selection as a Markov decision process (MDP)

where RIS selects each element in 𝑪 sequentially as follows
• State: Currently selected phase shifts in 𝑪.
• Action: RIS select the phase shift of the next element following 𝝅.
• Transition: A new element in 𝑪 is determined, until all of 𝑪 is selected.
• Reward: After all the elements in 𝑪 is selected, a data set of random 𝒑 is 

generated, and the corresponding Rx signal _𝒚 are obtained. 
The negative CE loss between 𝒑 and 𝒇𝒘(_𝒚) is adopted as the reward.

• A replay buffer ℬ stores experiences of state, action, and reward tuples.

• Policy 𝝅 is modeled by a neural network and updated to improves the reward
of RIS using the sampled experiences in ℬ.

Updating mapping function 𝒇𝒘

• Given the experiences in ℬ,  𝒇𝒘 is updated to reduce the CE loss between the 
mapping result b𝒑 and label 𝒑 in the data set by using supervised learning.

• The rewards recorded in ℬ are re-calculated given the updated 𝒇𝒘.

Iterate until converge



Simulation Results
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• Sensing results of a 3D object gets close
quickly to the ground truth as the training
proceeds

• The proposed algorithm converges with a
high speed

• The proposed algorithm results in the
lowest CE loss among all benchmark
algorithms.
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Towards Ubiquitous Positioning 
by Leveraging RIS

Case Study III: RIS aided Ubiquitous Localization

#)

+ H. Zhang, et al, “Towards Ubiquitous Positioning by Leveraging Reconfigurable Intelligent Surface,” IEEE Commun.
vol. 25, no. 1, pp. 284-288, Jan. 2021.

, H. Zhang, et al, “MetaRadar: Indoor Localization by Reconfigurable Metamaterials,” IEEE Trans. Mobile Comput., to
appear. Arxiv: https://arxiv.org/abs/2008.02459.



Background

RSS based Positioning:
• Advantages: simplicity of measuring RSS and minimum hardware

requirements

• Principle: users’ locations are obtained by comparing the measured
RSS and the stored RSS distribution in the indoor environment.

Radio Frequency (RF) based Positioning:
• Applications: Navigation, healthcare monitoring, indoor positioning
• Categories:

• Received signal strength (RSS)

• Channel state information (CSI)

• Angle-of-arrival (AoA)

• Time-of-arrival (ToA)

$*



Motivation

Challenges
• Localization protocol design: coordination among the RIS, AP and users.

• RIS configuration design

• Large number of RIS configurations.

• Complicated relation between the RIS configuration and the RSS
distribution.

Limitations of Traditional Methods
• The RSS distribution is passively measured and cannot be customized

• The localization performance degrades if RSS values are similar to
each other in the RSS distribution

RIS aided Positioning:
• Users receive the signals from the AP and the RIS.

• RIS adjusts the RSS distribution by changing its configuration.

$!



System Model

Positioning Scenario
• AP: sends signals to the RIS and mobile users.
• RIS: reflects the signals from the AP to the users.
• Users: measure the RSS for positioning.
• Space of Interest (SOI): is discretized into N blocks to represent users’

positions.
RIS Model
• M elements.
• Each element has C states with

different reflection coefficients.
𝑟5 𝑐5 = 𝑟 𝑐5 𝑒6(7)8)

• Configuration 𝒄：the vector of
all the elements’ states

Phase shiftAmplitude

$"



System Model
RSS Model
• Direct LOS channel ℎ9:: AP → User at the 𝑛-th block
• Reflection channel ℎ5,;(𝑐5): AP → element 𝑚 → User at the 𝑛-th block

• RSS at the 𝑛-th block under configuration 𝒄

Wavelength of 
the RF signal

Distance between 
AP and the 𝑚-th
element

Distance between 
the 𝑚-th element 
and the user

Power gains 
of AP and user 
antennas

Transmission 
power of AP

Log-normal shadowing
component

$#



Positioning Protocol
The positioning process has K cycles, and each cycle contains four steps:

• Optimization: AP selects the optimal configuration 𝒄, for this cycle.

• Broadcast: AP broadcasts 𝒄, to users and the RIS.

• Measurement: AP sends single-tone signal with frequency 𝑓7, and users

record the RSS under configuration 𝒄,.

• Response: Users send the RSS information to the AP.

Optimization

Broadcast

Measurement

Response

$$



Problem Formulation
Objective: Minimize the average (Bayesian) positioning loss
(weighted probabilities of false positioning) in every cycle.

𝑙 𝒄, =L
<∈>

L
;,;*∈𝒩
;@;A

𝑝<,;, 𝛾;,;*
, O

ℛ+,-*
.
ℙ 𝑠<, 𝒄,, 𝑛 ⋅ 𝑑𝑠<,

• 𝑝<,;, : prior probability that user 𝑖 is at the 𝑛-th block in the 𝑘-th cycle.
• 𝛾;,;*

, : loss parameter when the positioning result is the 𝑛′-th block while
the user is at the 𝑛-th block.

• ℙ 𝑠<, 𝒄,, 𝑛 : probability that user 𝑖 receives 𝑠<, under 𝒄, at the 𝑛-th block.
• ℛ<,;*

, : decision region for block 𝑛A.
• Obtained using the maximum likelihood estimation method [1].
• If 𝑠<, ∈ ℛ<,;*

, , we estimate that user 𝑖’s position is 𝑛′ in the k-th cycle.

[1] M. A. Youssef, et al, “WLAN location determination via clustering and probability distributions,” in Proc. IEEE
PerCom, Fort Worth, TX, Mar. 2003.

$%



Implementation
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Metasurface module:
• Metasurface layer

• Size: 69× 69× 0.52 cm3

• 4 phase shifts (interval -
C
)

• Control layer

• Power Supply Layer

AP and user modules:
• USRPs (LW-N210)

• Horn antenna (for AP) or small

polymer antenna (for users)

Space of interest (SOI)
• Size: 0.5× 0.5× 0.5 m3



Simulation Results

• The positioning error obtained by the proposed scheme is much lower
and has a faster convergence speed than that of the random
configuration scheme.

$'



Potential Future Directions

$(

High-resolution sensing
• Mobility and Doppler resolution

• Angular resolution and non-uniform illumination

Simultaneous localization and mapping (SLAM)
• Time-varying states and objects, which is unknown

• Movements of objects on slow time scales

• High definition map

Other issues
• Context-awareness

• Security and privacy

For communication, please check

our other tutorial slides 



Conclusions
• RIS is a promising paradigm for future 

wireless sensing applications
– Control and customize favorable radio 

environments
– Provide high accuracy contact/contactless 

sensing with wireless data gathering
– If mirrors can be controlled, Bruce Lee can 

do a better localization job.
• We explore different aspects related to 

RIS-aided sensing and localization
– Posture recognition

– RF 3D shape sensing

– Ubiquitous positioning
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