MetaSensing: Reconfigurable Intelligent Surface Assisted RF Sensing and Localization

Zhu Han

Department of Electrical and Computer Engineering University of Houston, Houston, TX, USA

http://wireless.egr.uh.edu/research.htm

ACK: Boyao Di, Hongliang Zhang, Lingyang Song, Jingzhi Hu, Haobo Zhang

Table of Contents

Background

- 6G Communications and Requirements
- RIS Basics and Potential Applications

RIS-aided RF Sensing and Localization

- Case 1: Posture Recognition
- Case 2: RF 3D Shape Sensing
- Case 3: Ubiquitous Localization
- Potential Future Directions
- Conclusions

Moving Towards 6G: Emerging Use Cases

VR/AR

AR for surgery

VR for education

Internet-of-Things

Auto-manufacturing

E-health

Intelligence

Smart home

Environment sensing

General 6G KPI Targets

Greater sensing capability

Higher positioning accuracy

6G Challenges: Sensing Efficiency

Conflict between simplicity (comfort) and high sensing accuracy

- WiFi based RF Sensing
 - Requires the cooperation of multiple WiFi access points to achieve high sensing accuracy
- mmWave Radar
 - High hardware cost makes it hard for mass deployment

WiFi based RF Sensing

mmWave Radar

Solutions: Meta-Material aided Sensing

Expectation on a new technology

- Low cost in manufacture
- Easy and flexible deployment
- Compatible with 6G demands on sensing and localization

Reconfigurable Meta-surfaces

- Implemented by metamaterial
- Cost efficient in manufacture and deployment
- Control and customize favorable radio environments

gathering

 So-called Reconfigurable Intelligent Surface (RIS) or Intelligent Reflecting Surface (IRS)

Introduction of Metamaterial

Natural Materials: Limited EM Wave Control Capability

- The dielectric permittivity, ε , and magnetic conductivity, μ , of materials determine the capability of controlling EM waves (e.g. reflection, refraction)
- Limited possibilities of atom arrangement of natural materials lead to limited available values of ε and μ , and thus limited capability to control EM waves

Metamaterials: Powerful EM Wave Control Capability

- Metamaterials are artificial structures that are non-existent in nature and can have arbitrary pair of (ε, μ)
- Two technology fields studying metamaterials Optics and Microwave

History of Metamaterial Development

Veselago. Concept of Left-handed material

- $\epsilon < 0, \mu < 0$
- Negative refraction

1968

Sievenpiper. Proposal of meta-surface

- Two-dimensional
- Simplify design and manufacturing

1999

D. R. Smith. Experimental verification

Left-handed material

2001

1996 & 1999

Pendry. Realize -ε and -μ

- -ε: periodic array of metallic rods
- -µ: periodic array of split ring

2001

Sievenpiper.

Programmable metasurface

- Varactor
- 360° reflection phase tuning

2006

Pendry, et al.

Transformation optics

- Design metamaterial with any ϵ and μ
- Enabling flexible control of EM wave

History of Metamaterial Development

H. Kamoda, et al. Reconfigurable large reflectarray with PIN diodes

- Easy to control
- Millimeter wave

2011

M. D. Renzo, et al.
Proposal of reconfigurable intelligent surfaces

- Focus on reflection
- Extensive applications in wireless networks

2019

S. Zhang, et al.Proposal of intelligent omni-

surface

 Enabling dual function of reflection and transmission

2020

2014

T. Cui, et al. Programmable metasurface with PIN diodes

- Simplify the design
- Digital coding

2019

NTT Docomo.

Protype of metamaterial reflector

 10x increase in data rate

Reconfigurable Intelligent Surfaces (RIS)

An ultra-thin metasurface composed of multiple layers

- Outer layer: A 2D-array of RIS elements; directly interact with incident signals.
- **Middle layer**: A copper plate; prevent the signal energy leakage.
- Inner layer: A printed circuit; connect the RIS elements to the RIS controller.

RIS element

- Low-cost sub-wavelength programmable metamaterial particle.
- Reflect incident RF signals and impose a controablle phase shift
- Working frequency: from sub-6 GHz to THz

Example of a programmable metamaterial particle

Working Principle for Wireless Communications

RIS works as a beamformer

- Signals can be reflected or transmitted
- Phase shift of the radiation is controlled by PIN diodes' bias voltages (ON/OFF of the diode)
- Programming the ON/OFF of all diodes collectively realize different beamforming modes

Advantage

- Cost efficiency: Analog beamforming, no extra RF equipment needed for demodulation & modulation
- Energy Efficiency: No extra RF signals generation, energy saving

Signal Reflection Model

Model of reflected signal on an RIS element

$$y = \Gamma e^{j\theta} x$$

- $\Gamma \in [0,1]$: reflection amplitude
 - $\Gamma = 0$: absorbed
 - $\Gamma = 1$: fully reflected
- θ ∈ [0,2π]: phase shift between incident and reflected signals.

- In practical systems, available phase shifts of an RIS element are discrete, due to limited number of PIN diodes (K PIN diodes $\Rightarrow 2^K$ phase shifts).
- The parameters of an RIS element¹ are carefully designed so that the phase shifts have uniform intervals.
 H. Zhang, et al, "Reconfigurable Intervals.

H. Zhang, et al, "Reconfigurable Intelligent Surfaces assisted Communications with Limited Phase Shifts: How Many Phase Shifts Are Enough?" IEEE Transactions on Vehicle Technology, vol. 69, no. 4, pp. 4498-4502, Apr. 2020.

induced current distribution

^{1:} e.g., shape of the metal patch and type of the PIN diodes

Channel Model

Rician Model

- User-RIS-BS links act as the dominant LoS component
- All other paths contributes the NLoS

$$\tilde{h}_{m,n} = \sqrt{\frac{\kappa}{\kappa+1}} h_{m,n} + \sqrt{\frac{1}{\kappa+1}} \hat{h}_{m,n},$$
 Ratio of LoS to NLoS LoS NLoS

Product of distance path loss

$$|h_{m,n}|^2 \propto d_{m,n}^{-\alpha} D_{m,n}^{-\alpha}$$

 $|\tilde{h}_{m,n}|^2 \propto d_{m,n}^{-\alpha} D_{m,n}^{-\alpha}$

Received signal

noise

$$y = \sum_{m,n} \underline{\Gamma} e^{j\theta_{m,n}} \underline{\tilde{h}_{m,n}} x + \underline{w}$$
Reflection Channel coefficient gain

Applications: Radio Frequency Sensing

Indoor Localization and Recognition

- Enhance remote RF sensing by customize radio environments.
- Enable high accuracy indoor human and object localization and recognition

Customize signal beams for scanning human location

Customized radio environement for sensing human posture

Prototype of Metasurface

- Size of metasurface: $45 \times 57 \times 0.71 \ cm^3$, total 640 metamaterial particles
- Size of each metamaterial particle: $2.87 \times 1.42 \ cm^2$
- Total number of possible phase shifts: 4
 - 2 of them are used, and have phase shifts with interval π
- Working frequency: 3.6 GHz

^{*} Photo shows the actual metasurface prototype used as the testbed in PKU lab.

Table of Contents

- Background
 - 6G Communications and Requirements
 - RIS Basics and Potential Applications
- RIS-aided RF Sensing and Localization
 - Case 1: Posture Recognition
 - Case 2: RF 3D Sensing
 - Case 3: Ubiquitous Localization
- Potential Future Directions
- Conclusions

Background

RF sensing

- Living environment is covered seamlessly by wireless signals
- Ubiquitous signals provide the foundation for RF sensing

Visualization of cellular signals

Principles:

- Sensing targets between a pair of RF Tx and Rx impact the RF channel.
- The Rx can recognize different sensing targets by getting different received signals.

Received signals change due to change of target

Applications

Advantages:

No needs for the contact or line-of-sight view of the sensing targets

Techniques Review

- Active Methods:
 - WiFi Sensing:
 - Utilize the impact of the targets on WiFi signals
 - Various metrics: signal strength, phase, doppler and so on
 - mmWave Radar:
 - Utilize the directional beams in mmWave communications
 - Receivers can detect reflected signals from targets
- Limitations: sensing accuracy is limited by channel conditions

Passive Method: RIS-aided RF sensing

Goals and Challenges

Goals

- Implement practical RIS-aided RF sensing system for human and object localization and recognition
- Achieve high sensing accuracy

Challenges

- Design practical sensing protocols to coordinate the RIS and the RF transceiver.
- Search the optimal phase shift selection for the RIS elements in a large feasible region.
- Propose efficient algorithms to obtain semantic meaning and location information of human and objects from received signals.

Case Study I: RIS aided Posture Recognition

RIS-based RF Posture Sensing: Design, Optimization, and Implementation

J. Hu, et al, "Reconfigurable Intelligent Surfaces based RF Sensing: Design, Optimization, and Implementation," IEEE Journal of Selected Areas in Communications, vol. 38, no. 11, pp. 2700-2716, Nov. 2020.

Motivation

RIS-based RF sensing system

- RIS can control the wireless environment, which can provide favorable wireless environment for RF sensing.
- Application in human posture recognition:
 - Recognize different human postures automatically

Challenges

- RIS configuration design: How does RIS control the wireless environment
 - The discrete phase shifts of a massive number of RIS elements need to be determined.
- Decision function design: How does Rx judge human posture
 - RF channels involve an RIS and a practical are hard to analyze, which makes the relationship between Rx signals and human posture inexplicit.
- Moreover, RIS configuration and decision function are coupled.

Model Description

System Structure

- Transmitter: A directional antenna which is pointed towards the RIS
- Receiver: An omni-directional vertical antenna below the RIS
- Human: Space reflection vector carries the information of postures.
- RIS: RIS elements in the same group are in the same state.

Channel Model

- Multi-path component:
 - Environment scattering
- LoS component:
 - Transmitter → Receiver
- Reflection dominated components
 - Transmitter → RIS → Human → Receiver

Periodic Configuring Protocol

Recognition Period:

- Contains K frames, during which the human posture is fixed
- Received signals during a recognition period are used for recognition

Frame Configuration:

Different states correspond to different phase shifts

- Each group of RIS elements sequentially changes from State 1 to N_a .
- Constituted by the durations that each group stays in the N_a states

Problem Formulation

Decision Function: The receiver use the decision function to generate the probabilities for deciding on different human postures.

Optimization Problem: Minimize the false recognition cost (Bayesian)

Problem Decomposition:

 Decomposing (P1) into the frame configuration optimization and the decision function optimization.

Algorithm Design: Optimize T

Solving Frame Configuration Optimization:

- **Step 1:** Construct measurement matrix Γ given frame configuration
 - Element $(\mathbf{\Gamma})_{k,j}$ is the received signals in the k-th frame due to unit reflection coefficient in the *j*-th space block, i.e.,

$$(\mathbf{\Gamma})_{k,j} = \mathbf{t}_k \mathbf{\alpha}_j$$

 t_k : k-th row of frame configuration T

 α_i : channels for the j-th block given RIS elements in N_a states

- Based on compressive sensing technique, minimizing mutual coherence of Γ increases the information of space reflection involved in received signals.
- **Step 2:** Minimize mutual coherence of Γ w.r.t. T, i.e.,

(SP1)
$$\min_{\boldsymbol{T}} \mu(\boldsymbol{\Gamma}) = \sum_{j \neq j'} \frac{|\boldsymbol{\gamma}_j^H \boldsymbol{\gamma}_{j'}|}{\|\boldsymbol{\gamma}_j\| \cdot \|\boldsymbol{\gamma}_{j'}\|}$$

 γ_i : the received signal vectors for the j-th block under configurations in *K* frames

- (SP1) $\min_{\mathbf{r}} \mu(\mathbf{r}) = \sum_{i \neq j} \frac{|\mathbf{\gamma}_j^H \mathbf{\gamma}_{j'}|}{\|\mathbf{\gamma}_j\| \cdot \|\mathbf{\gamma}_{j'}\|}$. To solve (SP1) efficiently, configurations in K frames are optimized iteratively.
 - In each iteration, pattern search and augmented Lagrangian methods are used to coarsely and finely optimize t_k .

Algorithm Design: Optimize L

Solving Decision Function Optimization:

- Step 1: Model the decision function £ with a neural network.
 - Input layer: received signals in *K* frames
 - Output layer: obtain probability of each posture using a softmax function

- **Step 2:** Optimize parameters of the neural network
 - Given the optimized frame configuration T^* in (SP1), a training data set of received signal vectors labeled with different human postures is collected
 - The objective is to minimize the *false recognition cost* by optimizing the weights of the neural network, i.e., θ , by using *back-propagation method*

(SP2)
$$\min_{\boldsymbol{\theta}} \sum_{i} \sum_{n \neq l_i} \mathcal{L}_n^{\boldsymbol{\theta}}(\boldsymbol{r}_i)$$
.

 r_i : i-th received signal vectors in training data set

 l_i : posture label of $oldsymbol{r}_i$ in the training data set

Implementation

RIS & RIS Control Circuit

- Size of RIS: $69 \times 69 \times 0.52 \ cm^3$
- **Dielectric substrate:** Rogers 3010 (dielectric constant: $\varepsilon = 10.2$)
- PIN diodes: BAR 65-02L × 3
- Total number of possible phase shifts: 8
 - Four of them are used with phase shifts $(\frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \frac{7\pi}{8})$
- RIS controller: FPGA ALTERA-AX301

Implementation

RF Circuit

- Baseband Processor: USRPs LW-N210
- RF Board: SBX-120W (0-6GHz, Max Power = 100mW)
- Amplifier: ZX60-43-S+ (Gain around 17dB)
- Synchronizer: RIGOL DG4202 provides the pps and clock signals.

 Data processor (host computer)

 Ethernet switch

LNA

(ZX60-43-S+)

Date Processor

 Host computer connects the Tx/Rx USRPs with Ethernet to send/receive baseband data

Experimental Results

Effectiveness:

 The average mutual coherence of the measurement matrix is reduced (from 0.36 to 0.22), which can improve sensing accuracy.

Experimental Results

- Compared with traditional RF sensing systems, RIS increases the posture recognition accuracy with 23.5%.
- Compared with the system with random frame configurations, the system with optimized frame configurations achieves 14.6% higher recognition accuracy.

Case Study II: RIS aided RF 3D Shape Sensing

MetaSensing:

Intelligent Metasurface Assisted RF 3D Shape Sensing by Deep Reinforcement Learning

J. Hu, et al, "MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning," IEEE Journal of Selected Areas in Communications, to be published.

Motivation

RF 3D shape sensing:

- From optical images, the complete information about 3D objects is hard to acquire due to the blocking of themselves.
- RF signals can detect these space of objects by reflection and scattering, which makes 3D sensing possible from RF signals

RIS-based 3D shape sensing

- RIS controls RF signal beams by manipulating configuration
- Using controlled RF signal beams, RIS can obtain more information about 3D objects in space and construct their shapes.

Challenges

- How to optimize the RIS's configuration to create favorable propagation channels for sensing
- How to obtain the mapping from RF signals to 3D shapes.

Model Description

System Description

- Transmitter: A directional antenna which is pointed towards the RIS
- Receiver: An omni-directional vertical antenna below the RIS
- **RIS**: Contains N meta-elements, each with N_S phase shifts
- Sensing Target: Existence of objects at M space grids

Channel Model

The target space is discretized into
 M space grids.

The total N×M reflection paths
 (Tx→ N RIS elements→ M grids→Rx)
 are summed at the Rx

Metasurface

Sensing Protocol

RF Sensing Protocol

- Synchronization Phase: synchronizes the Tx transmission, the RIS's configuration changes, and Rx reception
- Calibration Phase: the RIS is in c_0 (no phase shifts incurred), and the received signal is used to subtract the environmental scattering.
- Data Collection Phase: RIS changes its configuration with equal time interval, and the Rx averages the received signals in each config.
- Data Processing Phase: The Rx use a decision function to determine the objects' existence at different space grids.

Problem Formulation

Decision Function: The Rx use the mapping function f^w to estimate the probabilities for objects to be at M space grids, i.e., $\hat{p} \in [0,1]^M$.

Optimization Problem: Minimize the *cross-entropy (CE) loss* given configuration matrix C and mapping function parameters W

• Optimization of config. C and mapping f^w are highly coupled.

Algorithm Design

Decompose (P1) into configuration optimization and mapping function optimization problems

Challenge: Configuration matrix C is an integer matrix and has a large number of elements.

Solution: Propose a deep reinforcement learning algorithm which can find the optimal policy for selecting *C*.

Challenge: Mapping function f^w has unknown form and parameter w.

Solution: Model f^w by a neural network depicting an arbitrary function and propose a supervised learning algorithm to train w.

Algorithm Design

Updating RIS configuration selection policy π

- Formulate RIS configuration selection as a Markov decision process (MDP) where RIS selects each element in C sequentially as follows
 - State: Currently selected phase shifts in C.
 - Action: RIS select the phase shift of the next element following π .
 - **Transition**: A new element in *C* is determined, until all of *C* is selected.
 - Reward: After all the elements in C is selected, a data set of random p is generated, and the corresponding Rx signal \tilde{y} are obtained. The negative CE loss between p and $f^w(\tilde{y})$ is adopted as the reward.
- A replay buffer B stores experiences of state, action, and reward tuples.
- Policy π is modeled by a neural network and updated to improves the reward of RIS using the sampled experiences in \mathcal{B} .

Updating mapping function f^w

- Given the experiences in \mathcal{B} , f^w is updated to reduce the CE loss between the mapping result \hat{p} and label p in the data set by using supervised learning.
- The rewards recorded in \mathcal{B} are re-calculated given the updated f^w .

Simulation Results

Ground Truth	10 ⁰ Training Epochs	10 ¹ Training Epochs	10 ² Training Epochs	10 ³ Training Epochs	10 ⁴ Training Epochs
Z	Z	Z	Z	Z	z
x y	x y	x y	x y	x y	x y

- Sensing results of a 3D object gets close quickly to the ground truth as the training proceeds
- The proposed algorithm converges with a high speed
- The proposed algorithm results in the lowest CE loss among all benchmark algorithms.

Case Study III: RIS aided Ubiquitous Localization

Towards Ubiquitous Positioning by Leveraging RIS

① H. Zhang, et al, "Towards Ubiquitous Positioning by Leveraging Reconfigurable Intelligent Surface," IEEE Commun. vol. 25, no. 1, pp. 284-288, Jan. 2021.

② H. Zhang, et al, "MetaRadar: Indoor Localization by Reconfigurable Metamaterials," IEEE Trans. Mobile Comput., to appear. Arxiv: https://arxiv.org/abs/2008.02459.

Background

Radio Frequency (RF) based Positioning:

- Applications: Navigation, healthcare monitoring, indoor positioning
- Categories:
 - Received signal strength (RSS)
 - Channel state information (CSI)
 - Angle-of-arrival (AoA)
 - Time-of-arrival (ToA)

RSS based Positioning:

- Advantages: simplicity of measuring RSS and minimum hardware requirements
- Principle: users' locations are obtained by comparing the measured RSS and the stored RSS distribution in the indoor environment.

Motivation

Limitations of Traditional Methods

- The RSS distribution is passively measured and cannot be customized
- The localization performance degrades if RSS values are similar to each other in the RSS distribution

RIS aided Positioning:

- Users receive the signals from the AP and the RIS.
- RIS adjusts the RSS distribution by changing its configuration.

Challenges

- Localization protocol design: coordination among the RIS, AP and users.
- RIS configuration design
 - Large number of RIS configurations.
 - Complicated relation between the RIS configuration and the RSS distribution.

System Model

Positioning Scenario

- AP: sends signals to the RIS and mobile users.
- RIS: reflects the signals from the AP to the users.
- Users: measure the RSS for positioning.

Space of Interest (SOI): is discretized into N blocks to represent users'

positions.

RIS Model

- M elements.
- Each element has C states with different reflection coefficients.

$$r_m(c_m) = \underline{r(c_m)}e^{-jc_m\Delta\theta}$$

Amplitude Phase shift

 Configuration c: the vector of all the elements' states

System Model

RSS Model

- Direct LOS channel h_{lo} : AP \rightarrow User at the n-th block
- Reflection channel $h_{m,n}(c_m)$: AP \rightarrow element $m \rightarrow$ User at the n-th block

RSS at the n-th block under configuration c

$$s_n(\boldsymbol{c}) = \underline{s^t} + 20 \log_{10} \left| h_{\text{lo}} + \sum_{m \in \mathcal{M}} h_{m,n}(c_m) \right| + \underline{\xi}.$$
 Transmission Log-normal shadowing power of AP component

Positioning Protocol

The positioning process has *K* cycles, and each cycle contains four steps:

- Optimization: AP selects the optimal configuration c_k for this cycle.
- **Broadcast:** AP broadcasts c_k to users and the RIS.
- **Measurement**: AP sends single-tone signal with frequency f_c , and users record the RSS under configuration c_k .
- Response: Users send the RSS information to the AP.

Problem Formulation

Objective: Minimize the average (Bayesian) positioning loss (weighted probabilities of false positioning) in every cycle.

$$l(\mathbf{c}^k) = \sum_{i \in I} \sum_{\substack{n,n' \in \mathcal{N} \\ n \neq n'}} p_{i,n}^k \gamma_{n,n'}^k \int_{\mathcal{R}_{i,n'}^k} \mathbb{P}(s_i^k | \mathbf{c}^k, n) \cdot ds_i^k$$

- $p_{i,n}^k$: prior probability that user i is at the n-th block in the k-th cycle.
- $\gamma_{n,n'}^k$: loss parameter when the positioning result is the n'-th block while the user is at the n-th block.
- $\mathbb{P}(s_i^k|c^k,n)$: probability that user i receives s_i^k under c^k at the n-th block.
- $\mathcal{R}_{i,n'}^k$: decision region for block n'.
 - Obtained using the maximum likelihood estimation method [1].
 - If $s_i^k \in \mathcal{R}_{i,n'}^k$, we estimate that user *i*'s position is n' in the k-th cycle.

^[1] M. A. Youssef, et al, "WLAN location determination via clustering and probability distributions," in Proc. IEEE PerCom, Fort Worth, TX, Mar. 2003.

Implementation

Metasurface module:

- Metasurface layer
 - Size: $69 \times 69 \times 0.52 \ cm^3$
 - 4 phase shifts (interval $\frac{\pi}{2}$)
- Control layer
- Power Supply Layer

AP and user modules:

- USRPs (LW-N210)
- Horn antenna (for AP) or small polymer antenna (for users)

Space of interest (SOI)

• Size: $0.5 \times 0.5 \times 0.5 \ m^3$

Simulation Results

 The positioning error obtained by the proposed scheme is much lower and has a faster convergence speed than that of the random configuration scheme.

Potential Future Directions

High-resolution sensing

- Mobility and Doppler resolution
- Angular resolution and non-uniform illumination

Simultaneous localization and mapping (SLAM)

- Time-varying states and objects, which is unknown
- Movements of objects on slow time scales
- High definition map

Other issues

- Context-awareness
- Security and privacy

For communication, please check our other tutorial slides

Conclusions

- RIS is a promising paradigm for future wireless sensing applications
 - Control and customize favorable radio environments
 - Provide high accuracy contact/contactless sensing with wireless data gathering
 - If mirrors can be controlled, Bruce Lee can do a better localization job.
- We explore different aspects related to RIS-aided sensing and localization
 - Posture recognition
 - RF 3D shape sensing
 - Ubiquitous positioning

Publications

- 1. J. Hu, H. Zhang, B. Di, L. Li, L. Song, Y. Li, Z. Han, and H. V. Poor, "Reconfigurable Intelligent Surfaces based RF Sensing: Design, Optimization, and Implementation," IEEE J. Sel. Areas Commun., vol. 38, no. 11, pp. 2700-2716, Nov. 2020.
- 2. J. Hu, H. Zhang, K. Bian, M. D. Renzo, Z. Han, and L. Song, "MetaSensing: Intelligent Metasurface Assisted RF 3D Sensing by Deep Reinforcement Learning,"," IEEE J. Sel. Areas Commun., to be published.
- 3. H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, "Towards Ubiquitous Positioning by Leveraging Reconfigurable Intelligent Surface," IEEE Commun. vol. 25, no. 1, pp. 284-288, Jan. 2021.
- 4. H. Zhang, J. Hu, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, "MetaRadar: Indoor Localization by Reconfigurable Metamaterials," IEEE Trans. Mobile Comput., to appear. Arxiv: https://arxiv.org/abs/2008.02459.
- 5. J. Hu, H. Zhang, K. Bian, Z. Han, H. V. Poor, and L. Song, "HoloSketch: Semantic Segmentation by Radio Environment Reconfiguration," IEEE Trans. Mobile Comput., submitted.
- 6. H. Zhang, H. Zhang, B. Di, K. Bian, Z. Han, and L. Song, "MetaLocalization: Reconfigurable Intelligent Surface Aided Multi-user Wireless Indoor Localization," IEEE Trans. Wireless Commun., under revision.

Join or Visit Our Lab

http://wireless.egr.uh.edu/

http://www2.egr.uh.edu/~zhan2

